Department of Mathematics
 Jhargram Raj College
 Class: Mathematics(H) Sem-I

Topic: Integers

1. Use the division algorithm to establish
(i)The square of any integer is either of the form $3 k$ or $3 k 1$,
(ii)The cube of any integer has one of the form $9 k, 9 k+1$, or $9 k-1$,
(iii)The fourth power of any integer is either of the form $5 k$ or $5 k+1$.
2. Prove that $3 a^{2}-1$ is never a perfect square.
3. Prove that the sum of the squares of two odd integers cannot be a perfect square.
4. Prove that $\frac{(3 n)!}{(3!)^{n}}$ is an integer $\forall n \geq 0$.
5. If a is an integer not divisible by 2 or 3 then prove that $24 \mid\left(a^{2}+23\right)($
6. Let a,b,c be integers, no two of which are zero, and $d=\operatorname{gcd}(a, b, c)$. Show that $d=$ $\operatorname{gcd}(\operatorname{gcd}(a, b), c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))=\operatorname{gcd}(\operatorname{gcd}(a, c), b)$.
7. Find integers x, y, z satisfying $\operatorname{gcd}(198,288,512)=198 x+288 y+512 z$.
8. Prove that any integer of the form $8^{n}+1$ is composite.
9. If $n>1$ is an integer not of the form $6 k+3$, prove that $n^{2}+2^{n}$ is composite.
10. An integer is said to be square free if it is not divisible by the square of any integer greater than 1.Prove that (i) An integer(>1) is square free iff that can be factored into a product of distinct primes. (ii) Every integer $(>1$) is the product of a square free integer and a perfect square.
11. A positive integer n is called square-full or powerful, if $p^{2} \mid n \forall$ prime factor p of n . Show that n can be written as $n=a^{2} b^{3}, a, b$ are positive integers.
12. Prove that the system of linear congruence's $a x+b y \equiv r(\bmod n)$, $c x+d y \equiv s(\bmod n)$ has a unique solution if $\operatorname{gcd}(a d-b c, n)=1$.
13. If $x \equiv a(\bmod n)$, Prove that either $x \equiv a(\bmod 2 n)$ or $x \equiv a+n(\bmod 2 n)$.
14. The three most recent appearance of Halley's comet were in the years 1835,1910 and 1986; the next ocCurrence will be in 2061. Prove that $1835^{1910}+1986^{2061} \equiv$ $0(\bmod 7)$.
15. Show that if $\operatorname{gcd}(a, n)=\operatorname{gcd}(a-1, n)=1$ then $1+a+a^{2}+\cdots+a^{\varphi(n)-1} \equiv$ $0(\bmod n)$.
16. Prove that the average of the positive integers less than $n \&$ relatively prime to n is $\frac{1}{2} n, n \geq 1$.
17. Show that if $f(x)$ is a polynomial with integral coefficients and if $f(a) \equiv k(\bmod m)$, then $f(a+t m) \equiv k(\bmod m) \forall t \in \mathbb{Z}$.

References: 1. Elementary Number Theory by M.Burton.

2. An introduction to The Theory of Numbers by I.Niven,H.Zuckerman, H.Montgomery.

